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Estimation of the Probit Model From Anonymized Micro Data

Gerd Ronning∗ Martin Rosemann†

April 10, 2006

Abstract

The demand of scientists for confidential micro data from official sources has cre-
ated discussion of how to anonymize these data in such a way that they can be given
to the scientific community. We report results from a German project which exploits
various options of anonymization for producing such ”scientific-use- files”. The main
concern in the project however is whether estimation of stochastic models from these
perturbed data is possible and – more importantly – leads to reliable results. In this pa-
per we concentrate on estimation of the probit model under the assumption that only
anonymized data are available. In particular we assume that the binary dependent
variable has undergone post-randomization (PRAM) and that the set of explanatory
variables has been perturbed by addition of noise. We employ a maximum likelihood
estimator which is consistent if only the dependent variable has been anonymized by
PRAM. The errors-in-variables structure of the regressors then is handled by the simu-
lation extrapolation (SIMEX) estimation procedure where we compare performance of
quadratic and nonlinear (rational) extrapolation.

KEYWORDS: anonymization, misclassification, noise addition, post-randomization, SIMEX
procedure, statistical disclosure.
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1 Introduction

Empirical research in economics has for a long time suffered from the unavailability of
individual ”micro” data and has forced econometricians to use (aggregate) time series data
in order to estimate, for example, a consumption function. On the contrary other disciplines
like psychology, sociology and, last not least, biometry have analyzed micro data already for
decades. The software for microeconometric models has created growing demand for micro
data in economic research, in particular data describing firm behaviour. However, such data
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are not easily available when collected by the Statistical Office because of confidentiality.
On the other hand these data would be very useful for testing microeconomic models. This
has been pointed out recently by KVI commission.1 Therefore, the German Statistical
Office initiated research on the question whether it is possible to produce scientific use
files from these data which have to be anonymized in a way that re-identification is almost
impossible and, at the same time, distributional properties of the data do not change too
much. Results from this project have been published quite recently. See Ronning et al.
(2005) where most known anonymization procedures have been rated both with regard to
data protection and to informational content left after perturbation.

Published work on anonymization of micro data and its effects on the estimation of
microeconometric models has concentrated on continuous variables where a variety of pro-
cedures is available. See, for example, Ronning and Gnoss (2003) for such procedures and
the contribution by Lechner and Pohlmeier (2003) also for the effects on estimation when
anonymizing data either by microaggregation or addition of noise. Discrete variables, how-
ever, mostly have been left aside in this discussion. The only stochastic-based procedure
to anonymize discrete variables is post-randomization (PRAM) which switches categories
with prescribed probability.

In this paper we concentrate on estimation of the probit model for which only anonymized
data are available. In particular we assume that the binary dependent variable has un-
dergone post-randomization (PRAM) and that the set of explanatory variables has been
perturbed by addition of noise. We employ a maximum likelihood estimator which is consis-
tent if only the dependent variable has been anonymized by PRAM. The errors-in-variables
structure of the regressors then is handled by the simulation extrapolation (SIMEX) esti-
mation procedure.

In Section 2 we consider the probit model. We assume that the binary dependent
variable has been anonymized by PRAM whereas right-hand regressor variables have been
left in original form. Consistent estimates are available from an adapted estimation proce-
dure. We then turn to the situation that the continuous regressors have been anonymized
by noise addition (section 3). An attractive procedure for handling such situations is the
simulation extrapolation (SIMEX) estimator which will be briefly described. Section 4 then
presents some estimation results for the probit model when both the dependent and the
independent variables have been anonymized. We present results from a simulation study
where the PRAM adapted probit estimator is combined with the SIMEX approach. Some
concluding remarks are added in section 5.

2 The probit model under post randomization

2.1 The probit model

Consider the following linear model:2

Y ∗ = α + β x + ε (2-1)

with E[ε] = 0 and V [ε] = σ2
ε . Here the ∗ indicates that the continuous variable Y is

latent or unobservable. This model asserts that the conditional expectation of Y ∗ but not
the corresponding conditional variance depends on some explanatory variable x.3 However

1See KVI (2001).
2See, for example, Ronning (1991) or Greene (2000).
3x could also be interpreted as a vector representing a set of explanatory variables. However in this paper

we stick to the simple case.
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we observe only a binary variable Y which is related to the latent variable by the ”threshold
model”:

Y =

{

0 if Y ∗ ≤ τ

1 else .
(2-2)

It can be shown that two of the four parameters α, β, σ2
ε and τ have to be fixed in order to

attain identification of the two remaining ones. Usually we set τ = 0 and σ2
ε = 1 assuming

additionally that the error term ε is normally distributed. This is the famous probit model.
Note that only the probability of observing Y = 1 for a given x can be determined. If we
alternatively assume hat the error term follows a logistic distribution, we obtain the closely
related binary logit model.

2.2 Randomized response and post randomization

Randomized response originally was introduced to avoid non-response in surveys contain-
ing sensitive questions on, e.g., drug consumption or AIDS disease. See Warner (1965).
Särndal et al. (1992 p. 573) suggested use of this method ”to protect the anonymity of
individuals”. A good description of the difference between the two (formally equivalent)
approaches is given by van den Hout and van der Heijden (2002): In the randomized re-
sponse setting the stochastic model has to be defined in advance of data collection whereas
in post randomization this method will be applied to the data already obtained.

Randomization of the binary variable Y can be described as follows: Let Y m denote
the ’masked’ variable obtained from post randomization. Then the transition probabilities
can be defined by pjk ≡ P (Y m = j |Y = k) with j, k ε {0, 1} and pj0 + pj1 = 1
for j = 0, 1 . If we define the two probabilities of no change by p00 ≡ π0 and p11 ≡ π1,
respectively, the probability matrix can be written as follows:

Py =





π0 1 − π0

1 − π1 π1





Since the two probabilities of the post randomization procedure usually are known and
there is no argument not to treat the two states symmetrically, in the following we will
consider the special case

π0 = π1 . (2-3)

When the variable Y has undergone randomization, we will have a sample with n obser-
vations ym

i where ym
i is the dichotomous variable obtained from yi by the randomization

procedure.

In the handbook on anonymization (Ronning et al. 2005) we also discuss the extension
of PRAM to more than two categories. If the categories are ordered as, for example, in
the case of ordinal variables or count data, switching probabilities for adjoining categories
should be higher since otherwise the ordering would be totally destroyed. Of course, PRAM
could also be extended to joint anonymization of two or more discrete variables.

2.3 Estimation of the model under PRAM

Under randomization of the dependent observed variable we have the following data gen-
erating process:

Y m
i =

{

1 with probability Φi π + (1 − Φi) (1 − π)
0 with probability Φi (1 − π) + (1 − Φi)π

(2-4)
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Here Φi denotes the conditional probability under the normal distribution that the un-
masked dependent variable Yi takes on the value 1 for given xi, i.e. Φi ≡ Φ(α + βxi) =
P (Y ∗

i > 0 | xi) .

>From (2-4) we obtain the following likelihood function:

L(α, β|(ym
i , xi), i = 1, . . . , n)

=
n

∏

i=1

[Φi π + (1 − Φi) (1 − π)]y
m

i [Φi (1 − π) + (1 − Φi)π](1−ym

i
) . (2-5)

Global concavity of this function with respect to α and β may be checked by deriving first
and second (partial) derivatives of the log-likelihood function. Ronning (2005) derives the
Hessian matrix of partial derivatives. A simple formula for the information matrix can be
derived from which it is immediately apparent that maximum likelihood estimation under
randomization is consistent but implies an efficiency loss which is greatest for values of π

near 0.5. See Ronning (2005) for detailed results.

3 Addition of noise and the simulation extrapolation ap-

proach

3.1 Data protection by addition of noise

Consider the linear model which we write in usual way as follows: y = Xβ + u . Let ey

be a vector of errors with expectation zero and positive variance corresponding to y and
let EX be a matrix of errors corresponding to X. Addition of noise means that we have to
estimate the unknown parameter vector from the model

y + ey = (X + EX)β + u . (3-1)

This is the well-known errors-in-variables model for which anonymization of right-hand
variables creates estimation problems whereas anonymization of the dependent variable
only increases the error variance.4 Lechner and Pohlmeier (2005) consider nonparametric
regression models where the regressors are anonymized by addition of noise. They show
that from the simulation-extrapolation method (SIMEX) reliable estimates can be obtained.
For the logit model Cook and Stefanski (1994) present results regarding the effect of noise
addition and the suitability of the SIMEX method if the dependent variable y is observed
without error.

Additive errors have the disadvantage that greater values of a variable are less protected.
Take as an example sales of firms. If one firm has sales of 1 million and another sales of 100
million then addition of an error of 1 doubles sales of the first but leaves nearly unchanged
sales of the second firm. Therefore research has been done also for the case of multiplicative
errors which in this case should have expectation one. Formally this leads to

y ⊙ ey = (X ⊙ EX)β + u

where ⊙ denotes element-wise multiplication (Hadamard product). For results regarding
estimation of this linear model see Ronning et al (2005). In the following we consider only
the additive case.

4See Lechner and Pohlmeier (2003) for details. This should be compared with the case of microaggregation
where (separate) anonymization of the dependent variable creates problems. See Ronning et al. (2005).
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3.2 The SIMEX approach

We will only sketch the idea of this approach5 for the simple linear regression model which
is a special case of the linear model (3-1) considered above with only one regressor and a
constant term. It is well known from econometric textbooks that estimation of the regression
coefficient β by least squares leads to

plim β̂ = β
σ2

x

σ2
x + σ2

e

. (3-2)

if the regressor variable x can only be observed with error ex where σ2
x is the variance of

x and σ2
e is the variance of the error. Now assume that this variance is known and that

another error λ ex with λ > 0 is added to the error affected regressor variable by purpose.
Then we obtain

plim β̂(λ) = β
σ2

x

σ2
x + (1 + λ)σ2

e

(3-3)

so that a consistent estimator would be obtained for λ = −1.

Moreover, it can be shown that for nonlinear models this extrapolation approach is
appropriate at least approximately! Of course also for these models β̂(λ) can be evaluated
for any positive λ using simulation whereas results for λ < 0 have to be guessed. Cook
and Stefanski (1994) suggested an extrapolation procedure which fits a curve to the var-
ious points and extrapolates it for λ = −1. In particular they considered alternatively a
”quadratic” and a ”nonlinear” extrapolation function. Both will also be used in this paper.
See sections 4.2 and 4.3.

Usually M simulation runs are averaged for each λ so that

β̂(λ) =
1

M

M
∑

j=1

β̂j(λ)

is the estimate actually used. We follow this approach also in the present paper. Alterna-
tively the median might be used. See Cook and Stefanski (1994).

In the simulation study on which we report in the next section we use the ML estima-
tor suitable for the probit model under PRAM (see subsection 2.3) in the SIMEX routine
thereby taking account of the measurement error in the regressor.6 Therefore in the follow-
ing β̂(λ) will be the PRAM-corrected maximum likelihood estimator considered in section
2.3.

4 Simulation results

4.1 Simulation design

In this section we will estimate the two parameters α and β of the probit model defined
in (2-1) and (2-2) assuming that the dependent variable y has been anonymized by PRAM
and that the regressor variable x has been protected by addition of noise which is normally

5For details see, for example, Carroll et al (1995).
6Quite recently Küchenhoff et al (2005) have proposed a ”misclassification SIMEX”(MC SIMEX) estima-

tor for the probit model under randomization which can bee seen as an alternative to the maximum likelihood
approach used here. However the case of a continuous regressor observed with error is not discussed in that
paper.
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distributed with variance σ2
e . We assume that the PRAM parameter π and the error variance

σ2
e are known since in the anonymization approach these parameters will be controlled and

released to users of the data.7 Simulated data will be used for estimation. The two unknown
parameters are given by α = −2.5 and β = 0.6. The regressor variable is generated from
a normal distribution N(4.35 ; 1.752) and the error variable satisfies ε ∼ N(0; 1) the latter
recognizing the identification constraint of the probit model.

Since both the PRAM parameter π and the error variance σ2
e cause estimation bias

in the ”naive” estimation approach8 we will study the effect of both parameters on the
estimation results using9 π ε {1.0, 0.9, 0.8} and σ2

e ε {0.12, 0.52, 0.72, 1.12}. The latter
should be compared with the variation of the regressor given by σ2

x = 1.752 indicating a
maximal measurement error of about 60 %! Furthermore we will vary the sample size using
n ε {500, 1000}.

4.2 Quadratic extrapolation function

The maximum likelihood (ML) estimator of the probit model based on the likelihood func-
tion (2-4) is evaluated by a GAUSS programme written by the first author.10 We use
R = 500 iterations in this simulation study. In each iteration the ML estimator of the pro-
bit model is employed in the SIMEX procedure: First for each λ ε {0 , 0.5 , 1.0 , 1.5 , 2.0} we

computed M = 250 values of this estimator from which β̂(λ) was determined. Using the five
different estimates we then fitted a quadratic function to these five points and obtained the
final estimate of both α and β from evaluating this function at λ = −1. From the R = 500
estimates we computed mean, standard deviation, median, skewness (abbreviated as skew.)
, kurtosis (abbreviated as kurt.) and both the minimal and the maximal value which are
presented in tables 4.1 and 4.2 which differ by the magnitude of the error variance.

The results in the two tables show that this approach is quite promising even for a
substantial proportion of misclassified y-values and ’moderate’ measurement errors in the
regressor variable. See table 4.1. However for σ2

e = 0.49 the bias is notable (parts E. and F.
of table 4.2) and becomes unacceptably large for σ2

e = 1.21 (parts F. and H. of this table).
Interestingly the bias is smaller when π moves away from 1.0 indicating a countervailing
effect induced by the PRAM corrected ML estimator. A larger sample size helps a lot if the
measurement error is small as can be seen from a comparison of parts C. and D. in table
4.1 the latter showing much better results for the larger sample size of n = 1, 000.

The performance of the SIMEX approach depends on the appropriateness of the quadratic
extrapolation function which we used in our simulation. We therefore analyzed the scatter
plots from our simulations. Figure 4/1 shows some examples. For each graph we ran a
single simulation (R = 1) with n = 1, 000 observations. From M = 250 values of the ML

estimator β̂(λ) was computed for each λ. The extrapolated value of the function at λ = −1

7It is possible to extend the estimation procedure to the case of unknown π. See Hausman et al. (1998)
and Ronning (2005).

8Neuhaus (1999) presents a detailed discussion of bias from ’misclassification’ in binary regression models.
Table 2 in his paper gives formula of the (approximated) bias factor for the probit model although he
considers the case of a binary regressor. His formula reads (in our terminology assuming π > 0.5)) as

bias factor =
(2π − 1) φ(α)

φ [Φ−1 {(2π − 1) Φ(α) + 1 − π}]
.

Note that this expression contains the factor 2π − 1 < 1. In particular the bias factor reduces to this
expression if we set α = 0 implying shrinkage towards zero.

9Since we know from earlier simulation experiments that values of the PRAM parameter π create com-
putational problems if π is far away from 1.0 we confined simulation to the interval π ε [0.8 ; 1.0].

10Many thanks to Sandra Lechner for providing us with a SIMEX routine!
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Table 4.1: PRAM adapted ML estimation of the probit model combined with SIMEX
procedure (quadratic extrapolation) - Small error variance

A. n = 500 , σ2
e = 0.01

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5072 0.2288 -3.1847 -2.4950 -1.9039 -0.222 2.883

β 0.6016 0.0509 0.4784 0.5975 0.7536 0.218 2.796
0.900 α -2.5429 0.2598 -3.3810 -2.5366 -1.8287 -0.127 3.344

β 0.6103 0.0598 0.4523 0.6069 0.8012 0.170 3.151
0.800 α -2.5820 0.2861 -3.6368 -2.5735 -1.7812 -0.230 3.216

β 0.6196 0.0659 0.4412 0.6176 0.8399 0.264 3.071

B. n = 1, 000 , σ2
e = 0.01

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5104 0.1589 -3.0866 -2.5044 -2.0670 -0.175 3.154

β 0.6024 0.0354 0.5126 0.6012 0.7345 0.244 3.178
0.900 α -2.5315 0.1837 -3.0447 -2.5416 -1.9115 -0.035 3.138

β 0.6072 0.0425 0.4754 0.6077 0.7314 0.180 3.101
0.800 α -2.5537 0.2039 -3.3882 -2.5384 -2.0183 -0.452 3.552

β 0.6129 0.0463 0.4866 0.6093 0.7983 0.510 3.679

C. n = 500 , σ2
e = 0.25

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5190 0.2538 -3.2960 -2.5096 -1.8565 -0.278 3.086

β 0.6033 0.0575 0.4465 0.6011 0.7700 0.256 3.062
0.900 α -2.5019 0.2729 -3.2696 -2.4691 -1.7340 -0.332 3.080

β 0.6005 0.0616 0.4382 0.5933 0.7870 0.462 3.198
0.800 α -2.5772 0.3287 -4.0162 -2.5571 -1.7685 -0.646 4.258

β 0.6185 0.0751 0.4255 0.6127 0.9342 0.619 4.156

D. n = 1, 000 , σ2
e = 0.25

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.4927 0.1737 -3.1709 -2.4878 -2.0356 -0.259 3.058

β 0.5992 0.0392 0.5033 0.5966 0.7417 0.314 3.088
0.900 α -2.5161 0.1970 -3.2549 -2.5097 -1.9824 -0.318 3.083

β 0.6044 0.0440 0.4851 0.6032 0.7645 0.328 3.131
0.800 α -2.5209 0.2080 -3.2921 -2.5128 -2.0215 -0.408 3.265

β 0.6055 0.0476 0.4891 0.6028 0.7768 0.408 3.206

Remark: True parameter values: α = −2.50 , β = 0.60.

was determined. Then β̂(λ) was plotted against λ. In order to show the effect of the error
variance we used σ2

e = 0.49 as we did in the simulations reported in table 4.2. The biasing
effect of both increasing σ2

e and shifting π away from 1.0 can be clearly seen from this
figure. And it is evident from these examples that a monotonic extrapolation function is
quite adequate for this model!

7



Table 4.2: (Table 4.1 continued) PRAM adapted ML estimation of the probit model com-
bined with SIMEX procedure (quadratic extrapolation) - Large error variance

E. n = 500 , σ2
e = 0.49

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.4434 0.2586 -3.2482 -2.4409 -1.8305 -0.134 2.778

β 0.5873 0.0585 0.4425 0.5862 0.7781 0.141 2.866
0.900 α -2.4538 0.2934 -4.1007 -2.4314 -1.6708 -0.676 4.724

β 0.5901 0.0666 0.4319 0.5825 0.9640 0.730 4.820
0.800 α -2.5097 0.3383 -3.7274 -2.4687 -1.6240 -0.450 3.137

β 0.6027 0.0763 0.3978 0.5970 0.8563 0.387 2.913

F. n = 1, 000 , σ2
e = 0.49

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.4268 0.1820 -3.0655 -2.4174 -1.9797 -0.225 3.074

β 0.5823 0.0416 0.4676 0.5791 0.7465 0.336 3.351
0.900 α -2.4472 0.1923 -3.1788 -2.4379 -1.9467 -0.382 3.391

β 0.5883 0.0430 0.4718 0.5843 0.7216 0.359 3.248
0.800 α -2.4517 0.2077 -3.5712 -2.4428 -1.9029 -0.351 4.272

β 0.5894 0.0469 0.4601 0.5855 0.8463 0.387 4.509

G. n = 500 , σ2
e = 1.21

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.1507 0.2519 -2.9290 -2.1422 -1.2313 -0.218 3.115

β 0.5180 0.0564 0.3018 0.5140 0.7250 0.282 3.537
0.900 α -2.1815 0.2787 -4.2900 -2.1742 -1.2684 -1.040 9.401

β 0.5257 0.0631 0.3165 0.5234 0.9720 0.984 8.166
0.800 α -2.2205 0.3193 -3.4608 -2.1944 -1.4751 -0.648 3.683

β 0.5352 0.0718 0.3641 0.5285 0.7900 0.631 3.551

H. n = 1, 000 , σ2
e = 1.21

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.1465 0.1785 -2.6047 -2.1407 -1.7046 -0.137 2.574

β 0.5176 0.0401 0.4174 0.5157 0.6249 0.123 2.539
0.900 α -2.1641 0.1803 -2.9017 -2.1582 -1.7577 -0.367 3.241

β 0.5214 0.0412 0.4194 0.5190 0.6711 0.253 3.087
0.800 α -2.1767 0.1938 -3.1319 -2.1730 -1.6496 -0.313 3.881

β 0.5247 0.0445 0.4093 0.5230 0.7441 0.367 3.831

Remark: True parameter values: α = −2.50 , β = 0.60.

4.3 Nonlinear extrapolation function

Since the performance of the SIMEX estimator using quadratic extrapolation is not satis-
factory for larger measurement errors, it seems worth to compare those results with results
from the alternative ’nonlinear’ function also proposed by Cook and Stefanski (1994 p.
1314) which is given by

f(λ) = γ +
δ

θ + λ
(4-1)

where γ, δ and θ are the three parameters of the function. Note that this function can
describe only monotonic behavior contrary to the quadratic function and tends towards
(minus) infinity at λ = − θ. Some more properties are discussed in appendix A.

Using the same simulation design as described in subsection 4.1 we now estimate the
model using extrapolation function (4-1). However we restrict the fitting of the 3-parameter
extrapolation function to only three values of λ which reduces considerably the numerical
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Figure 4/1: Quadratic SIMEX extrapolation for different values of π and σ2
e . (N shows

estimates of α = 0.60 and • those of β = −2.50.)

effort. (Otherwise an iterative procedure has to be used.) Actually we choose λ ε {0, 1, 2}.
The corresponding formulae are given in the appendix. We also consider only the larger
sample size of n = 1, 000. Results from our simulations are given in table 4.3.

Let us first look at results without post randomization (π = 1.00). Even for the
largest error variance parameter estimates of the probit model show almost no bias at
all contrary to results for the quadratic case! This corresponds to results in Cook and
Stefanski (1994 section 3) for the logit model where nonlinear extrapolation outperformed
quadratic extrapolation.11 More importantly, the results are much more satisfying if post
randomization is applied to the dependent variable: the bias is considerably lower than in
the quadratic case especially for larger error variance (compare table 4.2).

However the standard errors of the estimators resulting from the nonlinear extrapolation
function are considerably larger than for the quadratic case. This is especially pronounced
for π = 0.80 indicating a substantial portion of randomization. Again this corresponds
to (graphical) results presented in Cook and Stefanski (1994): For the logit model and
a non-randomized dependent variable the nonlinear case implies larger variation than the
quadratic case. See figures 5 and 6 in their paper.

11These authors consider two explanatory variables which follow a bivariate standard normal distribution.
They also add the interaction of these two variables to the set of regressors. The error variance is set to
σ2

e = 0.5 which corresponds to our case σ2

e = 0.49 and they choose a sample size of n = 1500 whereas we
use n ε {500 , 1000}.
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Table 4.3: PRAM adapted ML estimation of the probit model combined with SIMEX
procedure (nonlinear extrapolation)

B. n = 1, 000 , σ2
e = 0.01

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5203 0.1602 -3.0190 -2.5181 -2.0724 -0.087 2.879

β 0.6047 0.0353 0.5008 0.6040 0.7209 0.046 3.003
0.900 α -2.5097 0.2304 -4.0292 -2.5060 -0.2324 1.119 25.583

β 0.5981 0.1949 -2.9282 0.6006 2.4475 -10.124 233.920
0.800 α -2.4858 0.8993 -10.0619 -2.5220 10.9660 9.902 166.838

β 0.5968 0.2391 -4.4924 0.6064 1.8826 -19.028 413.761

C. n = 1, 000 , σ2
e = 0.25

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5157 0.1781 -3.1270 -2.5081 -2.0497 -0.269 3.343

β 0.6034 0.0410 0.4934 0.6031 0.7606 0.267 3.294
0.900 α -2.5387 0.2009 -3.2369 -2.5341 -1.9225 -0.578 3.853

β 0.6083 0.0460 0.4689 0.6072 0.7974 0.636 3.871
0.800 α -2.5734 0.2847 -4.1278 -2.5214 -2.0660 -0.678 3.873

β 0.6178 0.0636 0.4922 0.6072 0.8994 0.822 4.652

D. n = 1, 000 , σ2
e = 0.49

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.5062 0.2050 -3.2516 -2.4991 -1.9661 -0.427 2.876

β 0.6011 0.0460 0.4918 0.5989 0.7888 0.437 2.895
0.900 α -2.5224 0.2304 -3.4580 -2.5059 -1.9129 -0.423 2.991

β 0.6053 0.0532 0.4761 0.6016 0.8169 0.470 3.094
0.800 α -2.5716 0.2768 -3.7070 -2.5359 -1.9782 -0.560 3.362

β 0.6173 0.0644 0.4858 0.6117 0.9497 0.558 3.588

E. n = 1, 000 , σ2
e = 1.21

π estimate std. dev. min. median max. skew. kurt.
1.000 α -2.4959 0.2278 -3.2437 -2.4697 -1.9493 -0.238 3.121

β 0.5988 0.0520 0.4837 0.5918 0.7746 0.246 3.197
0.900 α -2.5146 0.3119 -3.4572 -2.4754 -1.5631 -0.377 3.313

β 0.6036 0.0713 0.3899 0.5938 0.8332 0.459 3.753
0.800 α -2.5657 0.3687 -4.2288 -2.5077 -1.8329 -1.227 6.082

β 0.6145 0.0839 0.4390 0.6056 1.0098 1.050 4.855

Remark: True parameter values: α = −2.50 , β = 0.60.

The extremely large variation of the estimator for σ2
e = 0.01 in table 4.3 needs an

extra comment: If the error variance tends towards zero, the fit of the points (λ , β̂(λ))
used for extrapolation tends towards a straight line which however cannot be represented
by the nonlinear extrapolation function (4-1). From the results in the appendix it can
be demonstrated that in such cases the behaviour of the nonlinear extrapolating function
becomes very unsteady especially at λ = −1. Since the PRAM adapted ML estimator has
larger variance for π < 1 this instability is greater for π = 0.90 and extreme for π = 0.80.
See also figure 4/2 where we compare SIMEX estimates from both extrapolating functions;
for the nonlinear case the nonlinearity is more pronounced! Note that Cook and Stefanski
(1994) considered only one single – and rather large – value of the error variance. Therefore
the nonlinear variant of the extrapolation function cannot be recommended in general.

We also note that in some cases the median of estimates is closer to the true value than
the mean indicating asymmetric behavior of the distribution of estimators. However in most
cases considered in our simulations skewness is only moderate and does not produce smaller
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Figure 4/2: Nonlinear SIMEX extrapolation for different values of π and σ2
e . (N shows

estimates of α = 0.60 and • those of β = −2.50 in the quadratic case, × indicates nonlinearly
extrapolated values.)

bias on average. Moreover kurtosis indicates ’normality’ in most cases. One exception is
noted in part G. of table 4.2 which is due to to the relatively small sample size of n = 500.
The other abnormal case is given in part E of table 4.3 for nonlinear extrapolation, large
error variance and a high proportion of randomization. Finally, the extreme case of a very
small error variance has been commented commented already above.

5 Concluding remarks

Our simulation results show that the PRAM-adapted ML estimator of the binary probit
model facing misclassification can be used successfully in the SIMEX approach when the
continuous regressor is observed with error. The performance of the estimators for our
model is improved in terms of bias if the nonlinear extrapolation ist used. However this
advantage is obtained at the cost of a sometimes much larger variation of the estimator.
In particular this alternative cannot recommended if the error variance is small and the
dependent variable has been randomized (misclassified).

Results from this paper can be used to estimate the probit model from anonymized
data if PRAM and addition of noise are applied as anonymization procedures. We plan
to extend our analysis to the case of an arbitrary number of regressors. In particular we
want to study the case that binary regressors are included and are observed with errors
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as well.12 This may lead to an approach which combines the traditional SIMEX with the
Misclassification (MC) SIMEX recently proposed by Küchenhoff et al. (2005).

References

Carroll, R.J., Ruppert, D. and Stefanski, L.A., (1995). Measurement Error in Nonlinear
Models. London: Chapman and Hall.

Cook, J.R. and Stefanski, L.A.(1994). Simulation-Extrapolation Estimation in Parametric
Measurement Error Models. Journal of the American Statistical Association 89, 1314-
1328.

Greene, W.H. (2000). Econometric Analysis. Upper Saddle River (NJ): Prentice Hall
(fourth edition).

Frazis, H. und Loewenstein, M.A. (2003). Estimating Linear Regressions with Mismea-
sured, Possibly Endogenous, Binary Explanatory Variables . Journal of Econometrics,
117 , 151-178.

Hausman, J.A. Abrevaya, J. and Scott-Morton, F.M. (1998). Misclassification of the
Dependent Variable in a Discrete-Response Setting. Journal of Econometrics, 87,
239-269.

Kommission zur Verbesserung der informationellen Infrastruktur (editor) ( 2001). Wege zu
einer besseren informationellen Infrastruktur. Wiesbaden: Nomos (cited as KVI(2001)).
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A Nonlinear Simex Extrapolation

A.1 Introduction

In this appendix we derive the solution for determining coefficients a, b and c of the extrap-
olation function

f(x) = a +
b

c + x
(A-1)

if only three points are available (or used) and the point at x = 0 is included. (Note
that in the SIMEX literature usually λ instead of x is used.) Motivation for this approach
stems from the fact that this nonlinear functions can be seen as optimal in some stochastic
models (see Cook and Stefanski 1994) and that usually only very few points are used in
extrapolation. Since for three points an explicit solution is easily obtained and on the other
hand the approximation of the function to more than three points asks for an iterative
numerical procedure, this may be an acceptable compromise in finding a ”good” approxi-
mation. Note that depending on the sign of b the function tends towards (minus) infinity
at x = −c, i.e. it has a pole at this point. Moreover the function is always monotonically
in/de-creasing except in the trivial case b = 0 whereas the quadratic function is able to
describe non-monotonic behavior.

In section A.2 the solution is given and discussed. Section A.3 then contains the proof
of the result.

A.2 Results

We assume that three points (y0, x0) , (y1, x1) , (y2, x2) are available for fitting the function
and that in particular for the first point x0 ≡ 0 holds. For easier exposition we set
x1 = 1 and x2 = 2 although the solution could also be given in general terms of x1 and x2.
Note that in the SIMEX approach these values can be fixed by the user. Our special choice
corresponds to a subset of the usual SIMEX approach which considers x ε {0, 0.5, 1, 1.5, 2}.

The solution

c = 2
y1 − y2

y2 − 2y1 + y0

a = y1 − (y0 − y1) c

b = (y0 − a) c

or, equivalently, when given explicitly only in terms of y0, y1 and y2

a =
y0(y2 − y1) − y2(y1 − y0)

y2 − 2y1 + y0
(A-2)

b = 2
(y1 − y0) (y0 − y2) (y2 − y1)

(y2 − 2y1 + y0)2
(A-3)

c = 2
y1 − y2

y2 − 2y1 + y0
(A-4)
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satisfies exactly the three points given above. Since the denominator of all three solutions
equals zero if the three points lie on a straight line (and therefore y0 − y1 = y1 − y2 holds),
this case has to be excluded!

Extrapolation of the function for x = −1 is the main concern of the SIMEX approach.
The above solution leads to

f(−1) = a +
b

c − 1

or, equivalently,

f(−1) =
y0(y2 − y1) − y2(y1 − y0)

y2 − 2y1 + y0

+ 2
(y1 − y0) (y0 − y2) (y2 − y1)

(y2 − 2y1 + y0)(4y1 − 3y2 − y0)
(A-5)

A.3 Proof

Assuming that an exact fit of the three points to the function (A-1) exists we set

yj = f(xj) , j = 0, 1, 2.

For the special choice of the xj ’s given above we obtain the following set of equations:

y0 = a +
b

c

y1 = a +
b

c + 1
(A-6)

y2 = a +
b

c + 2

>From the first two equations of (A-6) we obtain

y1 − y0 = b
c+1 − b

c

= − b
c (c+1)

and from the last two equations

y2 − y1 = b
c+2 − b

c+1

= − b
(c+1) (c+2)

and therefore
y2−y1

y1−y0
= (−b)

(c+2)(c+1)

[

(−b)
(c+1)c

]−1

= c
c+2

from which the solution for coefficient c is obtained as follows: Rearranging the last equation
we get

(y2 − y1)c + 2(y2 − y1) = (y1 − y0)c

and therefore

c = 2
y1 − y2

y2 − 2y1 + y0
(A-7)

which equals (A-4) in section A.2.
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We now write the two first equations of (A-6) as follows:

(y0 − a)c = b
(y1 − a)c + (y1 − a) = b

Subtracting the second equation from the first one results in

(y0 − y1)c = y1 − a

and therefore using (A-7) we get

a = y1 − (y0 − y1) c

= y1 − 2
(y0 − y1)(y1 − y2)

y2 − 2y1 + y0

=
y1 [(y2 − y1) − (y1 − y0)] − 2(y1 − y0)(y2 − y1)

y2 − 2y1 + y0

=
y0(y2 − y1) − y2(y1 − y0)

y2 − 2y1 + y0
(A-8)

which equals (A-2) in section A.2.

Finally we obtain b from the first equation which we write again as

b = (y0 − a) c .

Inserting (A-7) and (A-8) we obtain

b =

[

y0 − y1 + 2
(y0 − y1)(y1 − y2)

y2 − 2y1 + y0

]

2
y1 − y2

y2 − 2y1 + y0

= 2
[(y0 − y1)(y2 − 2y1 + y0) + 2(y0 − y1)(y1 − y2)] (y1 − y2)

(y2 − 2y1 + y0)2

= 2
(y0 − y1) [(y2 − 2y1 + y0 + 2y1 − 2y2)] (y1 − y2)

(y2 − 2y1 + y0)2

= 2
(y0 − y1) (y0 − y2) (y1 − y2)

(y2 − 2y1 + y0)2

= 2
(y1 − y0) (y0 − y2) (y2 − y1)

(y2 − 2y1 + y0)2
(A-9)

which equals (A-3) in section A.2.

We now derive the expression for the function at x = −1. First note that

c − 1 = 2
y1 − y2

y2 − 2y1 + y0
− 1 =

4y1 − 3y2 − y0

y2 − 2y1 + y0

Therefore inserting the solutions of a, b and c into

f(−1) = a +
b

c − 1

we get

f(−1) =
y0(y2 − y1) − y2(y1 − y0)

y2 − 2y1 + y0

+ 2
(y1 − y0) (y0 − y2) (y2 − y1)

(y2 − 2y1 + y0)2

[

4y1 − 3y2 − y0

y2 − 2y1 + y0

]−1

=
y0(y2 − y1) − y2(y1 − y0)

y2 − 2y1 + y0

+ 2
(y1 − y0) (y0 − y2) (y2 − y1)

(y2 − 2y1 + y0)(4y1 − 3y2 − y0)

which equals (A-5) in section A.2.
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